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Strange Heat Flux in (An)Harmonic Networks
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We study the heat transport in systems of coupled oscillators driven out of
equilibrium by Gaussian heat baths. We illustrate with a few examples that such
systems can exhibit ‘‘strange’’ transport phenomena. In particular, circulation of
heat flux may appear in the steady state of a system of three oscillators only.
This indicates that the direction of the heat fluxes can in general not be
‘‘guessed’’ from the temperatures of the heat baths. Although we primarily con-
sider harmonic couplings between the oscillators, we explain why this strange
behavior persists under weak anharmonic perturbations.

KEY WORDS: Nonequilibrium statistical mechanics; entropy production; heat
conduction.

1. NETWORKS OF OSCILLATORS

In this note, we consider steady states of (an)harmonic oscillators driven
by heat reservoirs at different temperatures. We show, by simple examples,
that ‘‘anything is possible’’ for such physical systems: in particular, it is
basically impossible to guess in which direction energy flows. We will first
describe the harmonic case and then argue why the results extend to mildly
anharmonic problems.

The setup is that of n masses, all equal to 1, connected by a set of
harmonic ‘‘springs,’’ at most n(n − 1)/2 of them. For the sake of simplicity,
the position and velocity of each mass are chosen to be one-dimensional.
The potential is a function V(q1, q2,..., qn), which is given as a positive
definite quadratic form 1

2 (q, Vq). The (Gaussian) heat baths interact with
some (at least 2) of the n masses. Each mass is either attached to its own
heat bath at temperature Ti > 0, with friction Ci, or is attached to no heat



bath. In this case we will say that Ci=0 and leave Ti undefined. The
stochastic differential equations describing such a system are for i=1,..., n:

dpi=−(Vq)i dt − Ci pi dt+`2CiTi dwi(t),

dqi=pi dt,

where the wi(t) are independent Wiener processes. It will be convenient to
write the problem in matrix form. Let x=(p, q) denote the state of the
2n masses. The invariant measure of the problem (if it exists), is (up to
normalization) of the form exp(− 1

2 (x, Q−1x)) with the 2n × 2n matrix Q
being the solution to the Lyapunov equation

QAg+AQ=−B, (1)

where

A=1−C −V
1 0

2 , B=12CT 0
0 0

2 .

Here, C and T are the diagonal matrices whose elements are Ci and Ti. We
denote by H={i: Ci ] 0} the indices of the masses in direct contact with
a heat bath. The following condition assures uniqueness of the invariant
measure, and can be easily derived from: (1)

Lemma 1. Consider the space S spanned by the vectors {Vkei,
i ¥ H, k=0,..., n}, where ei denotes the ith unit vector of Rn. If S=Rn,
then (1) has a unique solution. Moreover, this solution is positive definite.

When the condition of Lemma 1 is not satisfied, a change of coordi-
nates shows that at least one mode is neither coupled to a heat bath nor to
the rest of the system. The simplest example where this happens is shown in
Fig. 1 (see refs. 2 and 3). The masses 1 and 2 are coupled to heat baths,
while the masses 3 and 4 are only coupled to the masses 1 and 2. All the
springs have the same coupling constant. Writing the equations of motion,
one easily checks that the variables q=q3 − q4 and p=p3 − p4 evolve as an
isolated harmonic oscillator.

Fig. 1. Non-unique steady state.
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We henceforth assume that the assumptions of Lemma 1 hold (this
can be easily verified for the examples given in the sequel). Therefore, the
steady state exists, is unique, and we denote by OfP the average value of
an observable f(x) in this state. For convenience, we shall write the matrix
Q as four n × n blocks

Q=1 X R
R g Y

2 , (2)

where X and Y are positive symmetric matrices. As a consequence of (1),
R g=−R. Averages of quadratic observables are given by the elements of
the matrix Q, namely Opi pjP=Xij, Oqi qjP=Yij, and Opi qjP=Rij.

2. HEAT FLUXES

We briefly recall a common definition of a heat flux between two
points of the system. (4) In general, the evolution of an observable f is given
by the equation ḟ=Lf, where L is the Fokker–Planck operator, in our
case

L=p · Nq − q · V Np − p · C Np+Np · CT Np.

By definition we have OLfP=0. The energy in the spring connecting
points i and j is Uij=− 1

2 Vij(qi − qj)2, where Vij < 0 when the coupling is
attractive. In order to obtain the heat flux between these two points, we
interpret the equation OLUijP=0 as a conservation equation for the
energy in the spring, and identify the terms in this equation as energy
fluxes. We denote the average value of the flux from i to j by fi Q j, whose
expression turns out to be

fi Q j=Vij Opj(qi − qj)P=Vij Opj qiP,

since Opi qiP=Rii=0 by antisymmetry of the matrix R. For a point i
connected to a bath, the heat flux entering the system through that point,
denoted by fi, is obtained similarly, leading to

fi=Ci(Ti −Op2
i P). (3)

Because of energy conservation, the total heat flux at every point has
average zero in the steady state. In the sequel, we only consider average
quantities and by flux we always mean average flux in the steady state.
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Very few results are available concerning the direction of the heat
fluxes in the system. The main one is the positivity of the global entropy
production, namely

− C
i ¥ H

fi

Ti
> 0.

This (strict) inequality has been proved in ref. 4 for an anharmonic chain
between two baths at different temperatures. Under the conditions of
Lemma 1, one can easily show that it remains valid for harmonic net-
works. (2) Because the matrix Q is positive definite, we can also conclude:

Lemma 2. The point(s) attached to the hottest bath(s) cannot
absorb heat from the other baths. The point(s) attached to the coldest
bath(s) cannot inject heat in the system.

Proof. If all the temperatures are the same, say J, one easily checks
that the steady state is Gibbsian, that is

Q=J 11 0
0 V−1

2 . (4)

In this equilibrium state all the fluxes vanish and the lemma is trivially
verified. Consider next a system S with at least two different temperatures,
and denote by Q the solution to the corresponding Eq. (1). Let Tmax be the
temperature of the hottest heat bath(s) of S and G > Tmax be an arbitrary
higher temperature. We define a system SŒ as a copy of S but whose
temperature matrix TŒ is given by

T −

i=˛G − Ti > 0 for i ¥ H,

0 otherwise.

Let QŒ be the solution to Eq. (1) for SŒ. We note that when all the param-
eters but T are fixed in Eq. (1), the solution Q(T) is linear in T. Therefore
Q+QŒ is a Gibbsian matrix (4) with J=G, in particular

Xii+X −

ii=G,

where we have used the block notation (2) for Q and QŒ. Since both matri-
ces are positive-definite, we have Xii and X −

ii > 0, therefore Xii < G for any
G > Tmax, and finally Xii [ Tmax. We consider next the flux fi entering the
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system through a ‘‘hot’’ point i for which Ti=Tmax. Because of Eq. (3) we
have

fi=Ci(Tmax −Op2
i P)=Ci(Tmax − Xii) \ 0.

The corresponding inequality for the cold point(s) is obtained by an
equivalent construction. This concludes the proof of Lemma 2.

The two results we have mentioned give some information on how the
system of oscillators exchanges heat with the baths. We are now interested
in knowing how the flux propagates within the system of oscillators. The
main observation of this note is that ‘‘everything’’ is possible, basically
through superposition of elementary solutions. Indeed, by the linearity of
Q(T), each heat bath can be considered as an independent flux source, and
the total flux at any point is simply obtained by adding the contribution of
all the baths. This is how the four examples below can be found.

Remark. It should be noted that the examples we provide are not of
thermodynamic nature, since they concern only a finite number of degrees
of freedom. Therefore, the notion of temperature has no sharp meaning,
and different definitions are possible. Thus, our results are counterintuitive
only because of preconceived notions of (equilibrium) thermodynamics. On
the other hand, the countercurrents of heat (energy) we illustrate below are
of course really there.

Example 1. A linear chain.

Consider a linear chain composed of four equal masses, each of which
is coupled to a heat bath. In the setup of Fig. 2, the heat flux is going
against the (local) temperature gradient between the masses 2 and 3.
Instead of defining the local temperature with the heat bath, we can also
use the local kinetic energy Op2

i P. However, we find Op2
2P=14 < 18=Op2

3P,
thus the ‘‘backward flux’’ persists. This first example can be easily under-
stood: as noted in the proof of Lemma 2, the matrix Q solving (1) is a
linear function of T and so are the fluxes. Thus, we can decompose
our system as the sum of two similar chains, one with temperatures
(100, 0, 0, 2) and the other with (0, 2, 20, 0). The total flux in the middle

Fig. 2. The flux between 2 and 3 goes against the temperature gradient. (C1=C2=1,
V13=−10, V12=V23=−20, Vii=1 − ;j ] i Vij in this and all the following examples,
f3 Q 1=f2 Q 3=0.008, f1 Q 2=0.290).
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Fig. 3. A circulation of energy remains in the steady state (C1=C2=1, V13=−10,
V12=V23=−20, f3 Q 1=f2 Q 3=0.008, f1 Q 2=0.290).

spring still goes to the right, since temperature T1 pushes much more energy
into the chain than T3 does.

Example 2. Circulation of heat.

In this second example, the heat injected in the system by the hot bath
has two possible ‘‘channels’’ to reach the cold bath. What is surprising is the
appearance of a ‘‘backward flux’’ in one of them which is not due to excess
temperature as in Example 1. As a result of this, a circulation of heat remains
in the steady state, as shown in Fig. 3. This example shows that energy fluxes
between heat baths, as we understand them in this note, are not similar to
electrical currents between potentials. Indeed, should the arrows of Fig. 3
represent electrical currents, the potentials Ui at points i=1, 2, and 3 should
satisfy U1 > U2 > U3 > U1. In other words, Fig. 3 contradicts a ‘‘Kirchoff ’s
Law’’ on current loops. Such an example can also be constructed when the
‘‘triangle’’ is in the center of a chain connecting two heat baths.

Example 3. Three connected heat baths with different coupling
constants.

The example in Fig. 4 shows that the circulation of Example 2 can also
be produced when all three masses are in contact with a bath, even if two
baths have the same temperature.

Fig. 4. Circulation in a ‘‘fully thermalized’’ triangle (Ci=1, V12=V23=−45, V13=−30,
f1 Q 2=0.57, f2 Q 3=0.35, f3 Q 1=0.03).
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Fig. 5. The lower part of the system pumps heat from cold to hot (Ci=1, V15=V56=
V36=−40, V25=V46=−20, f1 Q 5=2.4, f6 Q 3=0.2, f5 Q 6=0).

Example 4. A ‘‘heat pump.’’

In this last example, we construct a system that mimics a thermody-
namic heat pump. Figure 5 shows two chains of three oscillators coupled
through their middle point. The ends of the upper chain are connected to
the hottest (T1) and the coldest (T2) bath, while the ends of the lower one
are connected to intermediate temperatures (T3 and T4). Here again, the
heat in the lower chain flows against the temperature gradient. The inter-
esting point in this example is that no energy is flowing (in average)
between the two chains (f5 Q 6=0). It is as if the upper chain was acting on
the lower one through fluctuations only. By slightly varying the tempera-
tures, one can even obtain f5 Q 6 < 0. This last variant is quite different from
the thermodynamics of Carnot cycles, since the subsystem in which heat is
pumped releases energy into the pump. We remark that Lemma 2 prevents
us from building a pump between two baths if one of them is an extremal
temperature of the system.

The situations described in these four examples are not a ‘‘far from
equilibrium’’ behavior, because there is no such thing in harmonic systems.
Indeed, because of the linearity of Q(T), the fluxes in the system keep the
same sign when (all) temperatures are rescaled. Moreover, fluxes are
unchanged when all the temperatures are shifted by a constant. Therefore,
everything we have shown can happen at arbitrary temperatures, and with
arbitrarily small temperature differences. We also remark that because of
the loops of heat flux, there is no possible definition of local temperature
that would prevent the flux from going against the temperature gradient.

3. WEAKLY ANHARMONIC SYSTEMS

It is well-known that the heat transport in harmonic systems does not
reproduce the usual macroscopic laws, in particular Fourier’s law does not
hold. (5) Justification is commonly seen in the fact that the modes of a
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harmonic system are extended, causing the heat to be transported ballisti-
cally rather than diffusively. Note however that phenomena described in
this note continue to hold in a weak anharmonic limit. Indeed, consider a
slight perturbation of the coupling, for instance

Ve(q)=
1
2

(q, Vq)+
e

4
C
i < j

cij (qi − qj)4.

The existence of a unique steady state for certain systems with such a
potential is proved in ref. 6; since every point in our examples is reached in
a simple way from a heat bath, the results of ref. 6 generalize to this case.
The corresponding (smooth) invariant measure re is not Gaussian but still
decays rapidly at large energies. If re as a function of e is sufficiently
regular around e=0, fluxes are continuous functions of this parameter.
Then, for every example we have shown, one can find a small enough e so
that fluxes of the perturbed system have the same direction as those in the
unperturbed system. Although a written proof of the regularity of re does
not seem to be available yet, this result is believed to be true. (7, 8) A key
point is the following: as explained in ref. 9, the system in the steady state
spends most of its time below a certain energy level, with only rare excur-
sions to high energies. With sufficiently small e, one can make sure that the
anharmonicity is irrelevant in arbitrary long parts of the dynamics.
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